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Abstract

We analyze the steady-state response of a functionally graded thick cylindrical shell subjected to thermal and
mechanical loads. The functionally graded shell is simply supported at the edges and it is assumed to have an arbitrary
variation of material properties in the radial direction. The three-dimensional steady-state heat conduction and thermo-
elasticity equations, simplified to the case of generalized plane strain deformations in the axial direction, are solved ana-
Iytically. Suitable temperature and displacement functions that identically satisfy the boundary conditions at the simply
supported edges are used to reduce the thermoelastic equilibrium equations to a set of coupled ordinary differential
equations with variable coefficients, which are then solved by the power series method. In the present formulation,
the cylindrical shell is assumed to be made of an orthotropic material, although the analytical solution is also valid
for isotropic materials. Results are presented for two-constituent isotropic and fiber-reinforced functionally graded
shells that have a smooth variation of material volume fractions, and/or in-plane fiber orientations, through the radial
direction. The cylindrical shells are also analyzed using the Fliigge and the Donnell shell theories. Displacements and
stresses from the shell theories are compared with the three-dimensional exact solution to delineate the effects of trans-
verse shear deformation, shell thickness and angular span.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are advanced composite materials that are engineered to have a
smooth spatial variation of material properties. This is achieved by fabricating the composite material to
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have a gradual spatial variation of the constituent materials’ relative volume fractions and microstructure,
thus tailoring its material composition based on functional performance requirements (Miyamoto et al.,
1999). FGMs offer great promise in applications where the operating conditions are severe, including space-
craft heat shields, heat exchanger tubes, plasma facings for fusion reactors, engine components, and high
power electrical contacts or even magnets. For example, in a conventional thermal barrier coating for high
temperature applications, a discrete layer of ceramic material is bonded to a metallic structure. However,
the abrupt transition in material properties across the interface between distinct materials can cause large
interlaminar stresses and lead to plastic deformation or cracking (Finot and Suresh, 1996). These adverse
effects can be alleviated by functionally grading the material to have a smooth spatial variation of material
composition, with ceramic-rich material placed at the high temperature locations and metal-rich material in
regions where mechanical properties, such as toughness, need to be high.

Numerous studies have been performed to analyze the response of functionally graded plates. For exam-
ple, Reddy (2000) has analyzed the static behavior of functionally graded rectangular plates based on a
third-order shear deformation plate theory. Cheng and Batra (2000) and Reddy and Cheng (2001) have
used the method of asymptotic expansion to study the three-dimensional thermoelastic deformations of
functionally graded elliptic and rectangular plates, respectively. Vel and Batra (2002, 2003a,b) have pre-
sented exact three-dimensional solutions for the steady-state and quasi-static transient thermoelastic re-
sponse of functionally graded thick plates with an arbitrary variation of material properties in the
thickness direction. Qian et al. (2004) and Qian and Batra (2004) have obtained results for the steady-state
and transient thermoelastic response of functionally graded plates using the meshless local Petrov—Galerkin
method that compare well with the exact solution of Vel and Batra (2002, 2003a,b).

Research on functionally graded cylindrical shells has been primarily focussed on the analysis of thermal
buckling and vibration using shells theories (e.g., Shahsiah and Eslami, 2003; Loy et al., 1999) and finite
element formulations. However, in order to validate the kinematic assumptions and assess the accuracy
of various shell theories and finite element formulations, it is important to obtain exact solutions to the
three-dimensional heat conduction and thermoelasticity equations. The objective of this investigation is
to provide an exact solution for simply supported functionally graded cylindrical shells subjected to stea-
dy-state thermal and mechanical loads. The governing partial differential equations of heat conduction and
linear thermoelasticity, simplified to the case of generalized plane strain deformations in the axial direction,
are exactly satisfied at every point of the cylindrical shell using a semi-inverse solution. The boundary con-
ditions at the simply supported edges, the thermal and mechanical boundary conditions on the inner and
outer surfaces of the shell and the continuity conditions at the interfaces between layers are also exactly
satisfied. We assume that the shell is made of an orthotropic material with material properties that are func-
tions of the radial coordinate and specifically consider two-phase isotropic or fiber-reinforced functionally
graded cylindrical shells that have a smooth variation of volume fractions and in-plane fiber orientations
through the radial direction. The effective material properties of the isotropic FGMs are determined in
terms of the local volume fractions and material properties of the two isotropic phases by the self-consistent
scheme (Hill, 1965). The effective material properties of the fiber-reinforced FGMs are estimated using the
Composite Cylinder Assemblage model (Hashin, 1979). Results are presented for (a) isotropic Al/SiC FGM
shells and (b) fiber-reinforced W/Cu FGM shells. Displacements and stresses from the shell theories are
compared with the analytical solution for different length-to-thickness, length-to-radius and through-the-
thickness variations of volume fractions and fiber orientations.

The paper is organized as follows. The coordinate system, three-dimensional equations of heat conduc-
tion and thermoelasticity, and boundary conditions are stated in Section 2. Exact solutions to the heat con-
duction and the generalized plane strain thermoelasticity problems are presented in Section 3. The Fliigge
and Donnell shell theories are formulated in Section 4 and the homogenization of material properties is
discussed in Section 5. The analytical and shell theory results are compared for representative isotropic
and fiber-reinforced shells in Section 6.
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2. Problem formulation

We describe the geometry of a functionally graded cylindrical shell using a global, cylindrical coordinate
system, with coordinates 6, x and r denoting the circumferential, axial and radial coordinate directions,
respectively, as depicted in Fig. 1. The shell is assumed to be of infinite extent in the axial direction and
composed of N functionally graded orthotropic layers, with each layer having a smooth variation of mate-
rial properties in the radial direction. In this coordinate system, the functionally graded shell occupies the
region [0, @] x (—o0, 00) x [F?, *M], where the inner surface and the outer surface of the shell are denoted
by "? and V), respectively. A particular layer of the shell, denoted by the superscript (n), extends from
"=V to 1 in the radial direction. In order to provide a more general shell solution that is also applicable
to flat plates, we introduce a layerwise, local circumferential coordinate system with coordinate directions,
s, x"™_ and z having the origin at the left edge (0 = 0) of nth layer’s midsurface as depicted in Fig. 1. The
local circumferential coordinate system is related to the global cylindrical coordinate system through the
transformations

§0 = R, L — e ROy (1)

where 5" and z" are the local arc length and local thickness coordinate, respectively, with respect to the

midsurface of the nth lamina. The midsurface radius, R", layer thickness, A" and midsurface circumfer-
ential length, S™ of each layer are defined as

RO = 2 (40 4 Dy ) ) ) gl RO g, 2)

N —

In the local circumferential coordinate system, the nth layer occupies a region in R® space denoted by
[0, S"]x (—o0, 00) x [—h"/2, h"/2]. Henceforth, we will drop the superscript (n) for convenience with
the understanding that all material constants, geometric parameters and solution variables are for the
nth layer unless the layer number is explicitly stated by a superscript.

Assuming that internal heat sources and body forces are absent, the three-dimensional steady-state heat
conduction equation, expressed in terms of the local coordinates, is

Fig. 1. Graphical depiction of a multilayer FGM cylindrical shell of infinite axial extent.
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where ¢,, ¢; and ¢, are the components of the heat flux vector. The corresponding three-dimensional
mechanical equilibrium equations, are
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where a,,, 04, Oy, O, 0, and o, are the components of the Cauchy stress tensor in a circumferential coor-
dinate system.

It is assumed that each layer of the functionally graded shell is made of a cylindrically orthotropic fiber-
reinforced materials with principal material direction oriented at an angle ¢ to e, on the cylindrical surface
containing the base vectors e, and e,. It is noted that the analytical solution presented here also applies to
functionally graded isotropic shells. Fourier’s law of heat conduction, which relates the heat flux to the tem-
perature gradient, is

R oT
4qs ki kK 0 Ri—i—z os
4. p=—|Kk2 kn 0 2)7; ) (5)
q, 0 0 K33 oT
0z

where T is the change in temperature of a material particle from that in the stress-free reference configura-
tion and «;; are the thermal conductivities. The mechanical constitutive equations, which relate the stresses
to the strains and change in temperature, are

O [Ciy Cp Ciz 0 0 Ci] ( & B

O Co Cp Cxun 0 0 Cyp Exx Ban

O _ Cis Cpn C 0 0 Cs Epr _ B33 T, (6)
O 0 0 0 Cyu C4 O 26, 0

O 0 0 0 C4 Css O 26, 0

Oy [Cis Ca C3s 0 0 Col \ 264 Bi

where Cj; are the elastic stiffnesses, &g, &xx, &4 &rx, &5 and &, are the components of the infinitesimal strain
tensor in a cylindrical coordinate system and f; are the stress moduli that are related to the thermal expan-
sion coeflicients o;; as follows:

B Crior + Crom + Crzoss + 2C16012
Bn Craoy + Croy + Cp3033 + 2Ca60112 (7)
Bss Cizoqy + Crzonmn + Ca3033 + 2C360010
Bra Cieoty + Cagoizn + Cas33 + 2Ce6012

Since the shell is graded in the radial direction, the material properties x;;, C; and o; are functions of the
radial coordinate, r. Employing our circumferential coordinate system, the infinitesimal strain tensor is re-
lated to the displacements as follows:
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R Ou u, Ou, Ou,
SSSZR’+Z§+R+Z7 Sxxzéx’ 8’7:62’
1 /Ou, Ou, 1 R Ou, Ouy U
8xr:§(62+8x>’ 8”:§<R+z 6s+§_R+Z>’ (8)

1 [/ Ou, n R Ou,
&y = = — .

’ 2\ R+z Os
We note that since the shell is viewed as a three-dimensional body, it is necessary to prescribe either a
displacement or traction component in each coordinate direction at every point on the boundary. We as-

sume that the shell is simply supported and maintained at the constant ambient reference temperature at the
edges and prescribe the following mixed boundary conditions:

u, =0, o5=0,=0 T=0 ats=0,8. 9)

Additional mechanical boundary conditions are imposed at the inner and outer surfaces of the shell by
prescribing either displacement or corresponding traction components, u, Or a,,, U, Or ., and u, or gy,
which are assumed to be independent of the axial coordinate. Although it is possible to prescribe the dis-
placements, it is customary to prescribe only tractions on the inner and outer surfaces of the shell. Since the
applied loads can be expanded as Fourier series, it is sufficient to solve the problem of a shell subjected to
the following sinusoidal loads:

. kms kms kms

o) =p-sin—, o) =p-cos——, o) =p-cos—— atz=—nl/2
rr s S sr s S Xr X S

(10)

(V)

rr

(N)

s

g

.k k k
= psin—, proos— ™ = preos— at 2N =™ /2,
S ! S ’ S
where the superscripts (1) and (V) denote the layer numbers, k is a positive integer that specifies the har-
monic of the sinusoidal distributed load and constants p,, p;, p, and p!, pt, p! specify the corresponding
amplitudes on the inner and outer surfaces, respectively. Similarly, the thermal boundary conditions on

these surfaces are specified as

9T 4 £g0 = 4~ sin X%
s 11
kms (11)

A A sin?v

where ¥~ and ;" are prescribed constants, and various thermal boundary conditions, corresponding to
either prescribed temperatures or heat fluxes or exposure to ambient temperature through boundary con-
vection, are specified by appropriately choosing the constants 9, ¢, 9" and . The functionally graded
layers are assumed to be in ideal thermal contact and perfectly bonded together and the following thermal
and mechanical continuity conditions are assumed at the interfaces r = " forn =1,...,N — 1, (Nowinski,
1978; Hyer and Rousseau, 1987)

(1) =0, gl =0, [wll=I[u]=ull=0, [on]=os]=on] =0, (12)

where [[g]] denotes the jump in the value of g across the interface.

The steady-state formulation leads to a one way coupling of the governing equations. Specifically, the
temperature field affects the mechanical response of the shell, but the mechanical response has no influence
on the temperature field. First, the temperature field is obtained by solving the heat conduction equations
(3), (5) with the pertinent boundary conditions (9), (11) and the continuity conditions (12) at the interfaces.
Subsequently, the displacements are obtained by solving for shell equilibrium, (4), through the constitutive
equations (6), the pertinent boundary conditions (9), (10) and the continuity conditions (12) at the
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interfaces. We assume that material properties of each layer of the functionally graded shell are analytic
functions of the radial coordinate z, and, thus, can be represented by a Taylor series expansion about its
midsurface as

o0
[Kij,cijaﬁij} = Z |:Kl§;)7cl§;)7ﬂl(‘;{>:|za' (13)
a=0
This assumption, however, is not a significant limitation on the applicability of the analytical solution.
Functionally graded shells that exhibit discontinuous or non-smooth material properties at a finite number
of radial locations, can be analyzed by introducing fictitious interfaces at those locations. Thus, the formu-
lation enables us to analyze shells with abrupt changes in volume fractions of the constituent phases and/or
discontinuous material microstructure in the radial direction.

3. Analytical solution

Since the applied loads and material properties are independent of x and the body is of infinite extent in
the axial direction, we postulate that the temperature change, 7, and displacement vector, u, are functions
of r and s only. Thus, deformations of the functionally graded shell correspond to a generalized plane strain
state of deformation. It is noted that due to the generalized plane strain assumption, the out of plane dis-
placements u, = u,(s, z) in the axial direction may be non-zero, as may be the case for orthotropic layers
with principal material directions oriented at an angle to the geometric axes.

3.1. Temperature field
We seek a semi-inverse solution to the heat conduction problem by assuming the following form for the
temperature field
T = n(z) sin ps, (14)

where p = kn/S. The assumed form of the temperature field identically satisfies the homogeneous boundary
conditions (9) for the temperature at the edges. Substitution for 7 from (14) into (5) yields the components
of the heat flux vector,

.
q, = —Kxn sinps,

_ PR cos
4 =~ p o5 cnncosps, (15)

= pR K COoS ps
Qx* R+Z 12’7 p7

where a prime denotes derivative with respect to z. Substitution of (15) into (3) and requiring that the result-
ing equation hold for arbitrary s, results in the following second-order ordinary differential equation with
variable coefficients

" / / 1 / R ?
w4 + (g oot = (75) P =0 1o

We assume a solution for #(z) in the form of a power series

1@ =3 g (17)
5=0
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Furthermore, we utilize the following Taylor series expansions to facilitate the solution process

(R1+z>’<Riz>’<Riz>2

where the series coefficients are defined as

4)(‘”:—(_2“7 o= D e

o0

=0

(e + 1)(=1)"

R* '
Substitution of (13), (17) and (18) into (16), multiplying the infinite series, appropriately shifting the index
of summation, and equating each power of z to zero, results in the following recurrence relation

o

> {<°< — B+ 1) — B+ 2)KE 0P 4 (B4 1) (e — B+ Dy P+D
p=0

a—p
+3° [(a — B =y + 1) Piyle ot — lﬁ(ﬂ)pzxﬁ”l)n(“’”’”} } =0, (19)
which has to hold true for every « =0, 1, 2, ... The recurrence relation (19) is evaluated successively for
(o+2) (0)

a=0,1, ... to obtain the coefficients 5 in terms of two constants, n” and #". The power series coef-
ficients #® are then inserted into (17) to obtain #5(z), and hence the change in temperature 7 and heat flux ¢
through (14) and (15), in terms of two constants, namely #” and »V. For an N-layer shell, the power series
solution procedure results in 2N constants. The constants are determined by satisfying the thermal bound-
ary conditions (11) on the top and bottom surfaces of the shell and the thermal continuity conditions (12) at
each of the N — 1 interfaces. The resulting system of 2N linear algebraic equations for the 2N unknowns is
readily solved to obtain #” and 5 for each layer. The series coefficients 7'”, thus obtained, are reinserted
into (17), (14) and (15) to yield the temperature and heat flux components for each layer.

3.2. Displacement field

With the temperature field established, we seek a semi-inverse solution for the displacement field by
assuming that

[ug, u,] = [Us(2), Uy(z)] cosps, u, = U,(z)sinps. (20)
As in the case of the thermal solution, simply supported boundary conditions at the edges of a layer are

identically satisfied by the assumed displacement field. We insert these assumed displacement forms into the
strain-displacement relations (8) to obtain

R U, . .
Ess = (_R —fz Us + R‘|‘Z> SINPS, & = 07 & = U: s ps,

1/ Rp U
xr:_U/ ) ST A —Ur U/_ - ) 21
& cosps, & 5 ( . + U, R +z) cos ps (21)

The stress components, which are obtained from the strains (21) and the constitutive equations (6), are
substituted into the equilibrium equations (4), to yield three coupled ordinary differential equations with
variable coefficients
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1 ! ! / 1 2
CuU, + C/33Ur - (333’7 + .33377) + (R _|_Z> ((—Cll —P2R2C55)Ur +pR(C11 + Css)Us
1
+pRCcU.,)) + <R+z> ((B11 — Ps3)n + C3U, — pRC ;U — pRCY U + C33U,
—PR(C13+ Cs5)U; — pR(C36 + Cys)UY,) = 0,
1 2
CssU" + CL U, + CysU” + CsU' + <R+Z> (pR(Cy1 + Css5)U, — (p*R*Cyy + Css) U,

l ! !
- pPR*CU,) + (R +z> (=pRBy1 + pRCU, — C55U + pR(Ci3 + Css) U, + CssU; +2C45UY) = 0,
1 2
C45U;’ + C:tSU: =+ C44U;/ + C£14U; + <R—H> (pRCI()UV _szszl]_V _p2R2C66UX)

1 ! !
+ (R+z> (=pRP1aN + PRCsU, — CisU, + pR(Cs6 + Cus) U, + CyuU’) = 0.

22
A solution to the system of ordinary differential equations (22) is obtained by assuming a power series gep2
resentation for U,(z), U(z), U(z),

U,(2), U2), Uule)] = 3 [0, U, U], (23)
=0

The power series (23), the Taylor series expansions (13) and (18), and the previously computed power series
solution for the temperature field (17), are substituted into the system of ordinary differential equations (22)

to yield the following recurrence relations:

(1) Z{(a—ﬁ+1)( — B+ 2)CH U 4 (B4 1) (o0 — B+ DCED )
B=0
—(@—B+1 )ﬂé?nw“ (B+ 1)L Dyleh

o—f
+ Z { {( —p C55> w=p=) +% (C(l"'i) + ng)) Ul 4 p Cg"g) Ui“ﬁk’)}
+ ¢! {(ﬁ 1= ﬁ33) I 4 (p+ DEGFTI US4 (00— -y + )R UL +1>}
+ =y + DCEIUEHN — p(y+ 1)CEUEI D — pla— =7+ 1)(01’3 + Cu D
—pla—=f—y+1) (C@“’Q + CE;';)) Uf*/f*”UH } —0,

o

(i) Z{(a—ﬁ+1)( — B+2)CHUD 4 (B+1)(a— p+ 1)CEN U

p=0
(= f+)(a—p+2)C Uf:‘*”“) +(B+1)(x— B+ 1)CE UL
a—f
3 [R( 4+ YUt — () + ) Ut U )
=0
20 [pie I 4 ply4 DCE U 4 pla— o+ 1)(CB + YU

+ 0 [~ DEEIUEID 4 (@~ f -y + DEGUEITD

+2(a— B—y+ CRUEH- »“H}:o,
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o

(i) Z{<a—ﬁ+1><a—ﬂ+2>c£?v§“/‘+2>+<ﬂ+1>< —p e o

=0
+ (o= B+ 1) (a— B+ 2)CHUD 4 (B4 1)(a— p+ DV UL

a—p
+3 [W) {%C%) U0 _ eyt _ eyt /f—y)}

=0
+¢® [—pﬁi'é)n(“’”f“’> 2+ DCEVUETD 4 pla— p—y+ 1) (CE + €Ul

+o -+ iUl ”’)+(oc—ﬁ—v+1)05&)U§“’”“)H}=0- (24)

which have to hold true for every o =0, 1, 2, ... The recurrence relations (24) are evaluated successively for
a=0,1,...to obtain three s1rnu1taneous equatlons Wthh are solved to obtain U (a+2) ,UX +2) and U, (#+2) in
terms of six unknown constants U, U9 U uM U and U"V. The power series coefficients vy
and Ur are inserted into (23) to obtam Uyz), U(z) and UJ2), and hence the components of the d1sp1ace-
ment field u,, u, and u, and strain field using (20) and (21), in terms of six constants, namely
vy u©® uh UM and UDY. For an N-layer shell, the power series solution procedure results in 6N
constants. The constants are determmed by satisfying the traction boundary conditions (10) on the top
and bottom surfaces of the shell and the mechanical continuity conditions (12) at each of the N — 1 inter-
faces. The resulting system of 6N linear algebraic equations for the 6 N unknowns is readily solved to obtain
v v vyl Ul and U for each layer. The solution for the series coefficients, U¥), U® and U®
are reinserted into (23) (20), (21) and (6) to yield the displacements, strains and stresses correspondmg to
each layer.

4. Classical and shear deformable shell theories

In this section, we present a concise formulation of the Fliigge shell theory (Fliigge, 1973) by integrating
the three-dimensional equilibrium equations (4) through the thickness of the shell. The resulting equilib-
rium equations for the shell are stated in terms of force and moment resultants. The kinematic assumptions,
which are based on either the classical or the first-order shear deformation theories, are presented in unified
form using tracers. The Donnell shallow (thin) shell theory is obtained from the Fliigge shell theory by
assuming that the thickness of the shell is much smaller than the midsurface radius.

4.1. Fliigge shell theory

The Fliigge shell theory is formulated by introducing a global circumferential coordinate system denoted
by z, s and x, where z = 0 corresponds to the global shell midsurface. The circumferential and thickness
coordinate are related to the cylindrical coordinates by s = R, z=r — R where R = (r'” + r™)/2. The
cylindrical shell occupies the region [0, S]X[L, —L]x[—H/2, H/2] as depicted in Fig. 2, where S = RO
and H=r"™ — 9 The force and moment resultant that act on a shell element are defined as the force
and moments per unit per unit length of the shell’s midsurface. The force and moment resultants, which
are obtained by integrating the stresses acting on differential area elements of a shell element, have the fol-
lowing definitions
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Fig. 2. Graphical depiction of a finite length monolayer FGM cylindrical shell including stress and moment resultants as required by
shell theory.

H)2

o, {JSS, O, (l +%) Oy, (1 —|—%> Jm}dz, (25)

2

{NS’7NS)C7NX7NXS} == /

{MS,MSX,Mx,ngS} -/ i {Za Oy (14 5) s (143 ) o 2z, (26)
{0,,0}) = /M {ow (143) 0}z 27)

The equilibrium equations of the shell are systematically obtained by integrating the pointwise three-
dimensional equilibrium equations in the radial direction. Eq. (4); is multiplied by (R + z)/R and integrated
through the thickness of the shell

H/2 : m sr xr S8
R e e (B F Rt

H2 (96, 10(zo,) Oay z\ 00, O
rr - r Sr 1 = xr _i —
/H/Z{ 0z +R 0z + Os + ( +R> Ox R} 0,

to yield the following shell equilibrium equation

00, 00, N
s x 'S . =0, 2
3s + R +2,=0 (28)

where 2, is the applied radial load per unit midsurface area due to the radial component of the tractions on
the top and bottom surfaces

H H H H
9 = + - - - - e - - .
7r (1 ZR) o (s,x, 2) (1 ZR) o (S’ . 2) 29)

Similarly, (4), and (4); are multiplied by (R + z)/R and integrated through the thickness of the shell to yield

N, N, O

: = Z2,=0,
3 + o + 2 +2,=0 (30)
ON,, ON,

K 2 g _ 1
Os + Ox +2:=0, (31)

where 2, and 2, are the applied circumferential and axial shear load, respectively, per unit midsurface area
due to the tractions on the top and bottom surfaces
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H H H H
P, = <1+2R)G”<S x,2> (1 2R>0',S<sx 2),
H H H H
P — _
2, <1 2R>O’,Y<S X, 2) (1 2R>arx<s X, 2).

Multiplication of (4), and (4); by z(R + z)/R and integration through the thickness of the shell results in the
following shell equilibrium equations

(32)

oM s oM Xs
: - Y ‘g—s =Y
3s =+ - o, + 0 (33)
oM, OM,
X X _ a7 — 4
ox s O+ 7. =0, (34)

where 7 and 7, are the applied moment per unit midsurface area due to the circumferential and axial
components, respectively, of the tractions on the top and bottom surfaces

T, = (H+H2)G (st>—|—<E Hz)a (sx H)
; 2 4R) " 2 2 4R) " 2)’
T :<H+Hz>0'. <st)+<H H2>0' (Sx H)
¥ 2 4R\ 2 2 4R) "™ 2

The displacement field for the classical and shear deformable shell theories are written in unified form using
tracers as

(35)

us(s,x,2) = u(s,x) + 2 (s, x),
Uy (s,x,2) = u’(s,x) + 2, (s, x), (36)
u,(s,x) = u’(s,x),

where #°,4° and u° are the midsurface displacements and v, . have the following definitions:

0(500) = o) + (1 - ) (1) S,

R Os (37)

0
buloir) =50 + 1 = ) (- 222,
Ox
The tracer ¢, = 0 for the classical deformation theory (CDT), wherein the transverse shear strains are zero.
The first-order shear deformation theory (FSDT) is obtained by setting ¢, = 1. The quantities —¢, and ¢, in
(37) are the rotations of the midsurface normals about the x and s-axis, respectively, for a shear deformable
shell. In the classical deformation theory, due to the assumption of zero transverse shear deformation, the
rotation of the normal is related to the slope of the midsurface after deformation. Therefore, the rotations
of the midsurface normals in the classical deformation theory are —u(s,x)/R + du’(s,x)/ds and du’ (s, x) /Ox
about the x and s-axis, respectively. Substitution of (36) into (8) yields the strains

A a1, al  ay,
bos = (1 +7€) <6s s +Ru’)’ b = <6x tz 6x)
1Tod oy, ALl oy, 1 fou
bor = 5{6x Z@er(lJrE) (as Z@sﬂ7 fr = < ) (38)
1 z\~! (o’ u’
w=3(1+7) (as “”s‘E)-
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The stresses are computed using the following plane-stress reduced constitutive relations (Reddy, 2003):
Oss On On O & — o T
Oxx (= le sz Qza e — T o,
Osx O Ox O 2o — 2015 T (39)

{ Oxr } _ Oy Q45] { 2¢,, }
Osr Oy Oss 2, |

where ta/ are the reduced off-axis stiffness coefficients that can be computed from the three-dimensional
elastic stiffnesses C;; (Reddy, 2003). Following Reissner (1945), we multiply the integrals for the transverse
shear force Q, and Q, in (27); by a constant %", known as the shear correction factor. In the present anal-
ysis, we set #" = 5/6, although this value was proposed by Reissner (1945) for a homogeneous plate or
shell.

In the first-order shear deformation theory, the five shell equilibrium equations (28), (30), (31), (33) and
(34) are necessary to obtain the five kinematic quantities u° (s, x), u%(s, x), u’ (s, x), @,(s, x) and @.(s, x). In the
classical deformation theory, the transverse shear force resultants are eliminated by inserting Q, and Q,
from (33) and (34) into (28) and (30) and (31). The resulting equilibrium equations are

M, OF(My+ M) M, 07, 7. N

_ S op —

o a50x ™ e T rTOT0
ON, ON 1 /oM, oM

N XS - N X8 a7 g — 40
Os ox R(@s ox +JS>+JS e (40)
ON,, ON,

: I p —
Os + Ox +2:=0.

4.2. Donnell shell theory

The Donnell shallow shell theory (Donnell, 1935) is based on the stipulation that the thickness of the
shell, H, is very small compared to its radius of curvature R, i.e., H/R < 1 and |z/R| < 1. The Donnell the-
ory is obtained from the Fliigge by neglecting z/R in the force and moment resultant integrals (25)—(27) and
in the kinematic assumptions for u in the classical deformation theory obtained by the substitution of
from (37) into (36). Similarly, H/2R in (29) and (32), and H*/4R in (35) are neglected. Furthermore, in the
Donnell shell theory, the transverse shear force term Q,/R is assumed to be negligible compared to the other
terms in (30). Consequently, the term (OM,/0s + OM,,/Ox + 7 ;) /R is neglected in the classical deformation
equilibrium equation (40),.

4.3. Cylindrical bending

The shell equations are specialized to the problem of a shell of infinite extent in the axial direction by
setting O(-)/0x = 0. We seek a semi-inverse solution to the midsurface displacements and rotations by
assuming that

u’ = U,sinps, u’=U,cosps, u’= U,cosps,
‘ (41)

¢, = D,cosps, ¢, = D, cosps,
where Uy, U,, U,, &, and @, are constants. The strains and stresses corresponding to the assumed midsur-
face displacements and rotations (41) are obtained using (38) and (39). The force and moment resultants
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which are obtained using (25)—(27) are substituted into equilibrium equations (28)—(34) to yield 5 linear
algebraic equations for the 5 constants Uy, U,, U,, ®,, @, for the first-order shear deformation theory.
When the classical deformation theory is used, the force and moment resultants are substituted into (40)
to obtain 3 linear algebraic equations for the 3 constants Uy, U, and U,.

5. Estimation of effective moduli of two-phase composites

There are several homogenization methods for estimating the effective properties of isotropic two-phase
functionally graded materials, including the self-consistent scheme by Hill (1965). The self-consistent meth-
od draws its estimates through the solution of an elastic problem in which an ellipsoidal inclusion is embed-
ded in a matrix possessing the effective material properties of the composite. The self-consistent scheme has
been shown to perform well for intermediate volume fractions of realistic microstructures (Reiter et al.,
1997). The self-consistent formulas for the effective thermal conductivity, k, thermal expansion coefficient,
o, Young’s modulus, E, Poisson’s ratio, v, and density, p, are the same as those used earlier by Vel and
Batra (2002). The effective properties of functionally graded fiber-reinforced composite materials are
determined using the composite cylinders assemblage model, which is based on the simplifying assumption
that the composite material is filled with an assemblage of cylindrical fibers embedded in a concentric
cylindrical matrix of different diameters such that the cylinders completely fill the volume of the composite
(Hashin, 1979). The shear modulus G,3 is estimated using the upper bound obtained by Hashin (1979).

6. Results and discussion

We present results for the analytical three-dimensional solution for the thermoelastic response of repre-
sentative functionally graded shells. As stated in the problem formulation, the shells are of infinite extent in
the axial direction and simply supported at the edges. We compare the predictions of Fliigge’s shell theory
and Donnell’s shell theory with the analytical solution for either continuous isotropic or orthotropic func-
tional grading. We consider continuous volume fraction distributions of particulate or fiber-reinforcement,
and, in the case the fiber-reinforced orthotropic shells, we also investigate continuous grading of fiber ori-
entation through the shell’s thickness. Results are provided at key locations for different geometric config-
urations and volume fraction variations. Tabulated analytical results are also presented at selected points
for representative functionally graded cylindrical shells.

The isotropic functionally graded shells considered in the examples are assumed to be composed
of aluminum and silicon carbide. We also study orthotropic functionally graded shells made of continuous
tungsten reinforcement fibers in a copper matrix. These material combinations have found widespread use
in high performance applications (Miracle, 2001). The relevant material properties for the constituent mate-
rials are listed in Table 1. We assume the material properties are independent of the temperature. Results
are generated through the application of either a mechanical or temperature load on the top surface of the
representative shell having non-zero components of the form,

Table 1
Material properties of aluminum, silicon carbide, copper and tungsten

Al SiC Cu W
E (GPa) 70.0 427.0 115.0 400.0
v 0.30 0.17 0.31 0.28
« (107%/K) 23.4 4.30 17.0 4.40

x (W/m K) 233.0 65.0 391.0 163.0
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Table 2

Convergence study for a Al/SiC isotropic FGM shell employing the self-consistent scheme

Number of series terms ,.(5/2,0) 655(S/2,—H/2) 6,+(5/2,0) 64(0,0) 7(8/2,0) q,(8/2,0)
2 4.547814 85.90864 —2.079126 0.8210083 0.4418832 0.6095894
4 4.569285 86.33582 —2.103852 0.8335770 0.4417561 0.6095698
6 4.569843 86.33649 —2.104001 0.8337424 0.4417559 0.6095701
8 4.569845 86.33650 —2.104001 0.8337428 0.4417559 0.6095701
10 4.569845 86.33650 —2.104001 0.8337428 0.4417559 0.6095701
12 4.569845 86.33650 —2.104001 0.8337428 0.4417559 0.6095701

The shell is partitioned into 20 layers in order to improve convergence. Fixed shell parameters are R=1m,
O =3n/4,S/H=3V, =08 Vg5 =02, n=2.

1

0.(s,x,H/2) = Ptsinns/S, or T(s,x,H/2)=T"sinns/S, (42)
and all other traction components on the top and bottom surfaces of the shell are set to zero. The inner
surface z= —H/2 is held at the ambient reference temperature. Since the analysis is based on linear
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Fig. 3. Mechanical response for isotropic FGM Al/SiC cylindrical shells of varying length to thickness ratio. Shell parameters are
R=1m, 0 =n/2,Vi-=08 V5. =02,n=2.
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thermoelasticity, results for combined thermomechanical loading may be determined through the superpo-
sition of results of separate analyses of thermal and mechanical loading cases.

The analytical solution presented here is applicable for arbitrary variation of material composition
through the thickness of the shell. However, for the representative shells considered in the examples, we
assume the following specific power-law variation of the reinforcement volume fraction

V= V+(V+—V)G+§)n, (43)

where 7~ and V", which have values that range from 0 to 1, denote the volume fractions on the inner and
outer surfaces of the shell, respectively. The exponent n controls the volume fraction profile through the
shell’s thickness. Vel and Batra (2002) have used a similar scheme to define the volume fraction distribution
for a plate. For orthotropic shells, the fiber orientation ¢ with respect to the s-axis in the s — x surface is
also assumed to have a power-law variation,

1 z\"”
=¢ + (T - ) [=+= 44
b=+ -0(3+5) (44)
45 20
4 f
""""""""""""""""""" 10 F
35
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Fig. 4. Thermal response for isotropic FGM Al/SiC cylindrical shells of varying length to thickness ratio. Shell parameters are
R=1m, @ =n/2,Vi.=08Vg.=02,n=2.
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where ¢~ and ¢ denote the fiber orientations on the inner and outer surfaces, respectively, and may typ-
ically range from 0° to 360°. The power m denotes the manner in which the orientation of the tungsten fi-

bers varies through the shell’s thickness.
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The temperature, heat flux, displacements and stresses are presented in the following non-dimensional
form for temperature loads
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Fig. 6. Through-the-thickness plots for an isotropic FGM Al/SiC cylindrical shell under thermomechanical loading. Shell parameters
are SSH=5R=1m, @ =1/2,V{. =08,V =02, n=2.
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X« 1 R —
T(S,Z) :FT(S7va), q(S,Z) :mq(saxaz)a 45
u(s )—Mu(sx ), 6(s )—Mc(sx ) .
7Z - OCmT+S2 ) aZ ’ aZ _EmOCmT+S ) 727
where z € [—H/2, H/2] is the global thickness coordinate.
When the shell is subjected to a mechanical load, the results are non-dimensionalized as
100E,,H’> 1004
ﬁ(s7z) :01(3+—§4u(57xaz), 6(5‘,2) :%0’(5‘,)@2)_ (46)

6.1. Isotropic functionally graded shells

We consider the functionally graded shell as a single inhomogeneous isotropic layer and employ our ana-
lytical power series solution for the analysis of a variety of shell geometries. We choose the silicon carbide
volume fractions on the inner and outer surfaces to be ¥~ =0.2, " = 0.8 and a quadratic volume fraction
profile in the radial direction with n = 2. We use the self-consistent scheme to estimate the spatially varying
effective material properties (Hill, 1965). As shown in Table 2, a convergence study was conducted for the
thermomechanical response of a very thick and deep shell having the above mentioned volume fraction dis-
tributions, S/H = 3, R = 1 m and ® = 3n/4. The computed exact results for the temperature, the heat flux,
the displacements and the stresses of a functionally graded shell as R — oo are identical to those presented
by Vel and Batra (2003b) for a flat plate. In order to improve convergence and increase computational effi-
ciency, the shell is divided into a total of 20 layers by the introduction of fictitious interfaces. The numerical
results are shown in Table 2 for 2,4,6,8,10 and 12 series terms per layer in (17) and (23). It clearly dem-
onstrates that the displacements, stresses, temperature and heat flux have converged to 7 significant digits

Table 3
Tabular results for the mechanical response of Al/SiC isotropic FGM shells of varying geometry and volume fraction distribution
using the self-consistent scheme

0=15=20 O=25=10 O=%5=5

n 1 2 3 1 2 3 1 2 3
i,(S/2,—H/2) 5.5317 6.1935 6.4928 9.3887  10.534 11.054 34.234 38.750 40.827
7,(5/2,0) 5.5394 6.2028 6.5025 9.4279  10.581 11.103 34.493 39.054 41.138
,(S/2,H/2) 5.5368 6.1999 6.4992 9.4127  10.563 11.083 34.345 38.881 40.939
i,(0, —H /2) 1.8635 2.0919 2.1873 5.9736 6.7120 7.0263 30.698 34.720 36.493
i14(0,0) 1.4597 1.6403 1.7138 4.9053 5.5186 5.7740 26.547 30.088 31.610
i,(0,H/2) 1.0553 1.1878 1.2397 3.8307 4.3170 4.5153 22.298 25.338 26.637
5,(8/2,0) —0.026452  —0.025532  —0.025159 —0.29092 —0.28107 —0.27701  —3.4672  —3.3457  —-3.2915
6,s(S/2,—H/2)  —2.3108 -2.6133 —-2.7119 —6.5434  -7.3910  —7.6682  —30.971  —34.887  —36.212
G55(S/2,0) —0.62966  —0.56321 ~ —0.48379  —1.6780  —1.5084  —1.2989 —6.6887  —6.0965 ~ —5.2788
,(S/2,H/2) 4.6932 5.1666 5.4938 11.828 13.030 13.858 40.911 45.177 48.049
ou(S/2,—H/2) —0.64383  —0.72811  —0.75557  —1.8230  —2.0592  —2.1364  —8.6290  —9.7199 —10.089
5.:(5/2,0) —0.15483  —0.15220  —0.13689  —0.46465 —0.46263 —0.42388  —23966  —2.4410  —2.3052
o (S/2,H/2) 0.90685 0.99809 1.0611 2.2987 2.5304 2.6900 8.0384 8.8605 9.4138
4(0,0) 0.12803 0.12542 0.12325 0.68058  0.66159  0.65447 5.3029 5.1459 5.0803
5 (0,H /4) 0.11434 0.11384 0.11236 0.57444  0.57214  0.56459 3.8955 3.8827 3.8274

Fixed shell parameters are R=1m, V. = 0.8, Vg =0.2.



Table 4
Tabular results for the thermal response of Al/SiC isotropic FGM shells of varying geometry and volume fraction distribution using the self-consistent scheme
0=13=20 0=15=10 o=3&35=5
n 3 1 2 3 1 2 3
u-(S/2,—H/2) 29.371 29.362 31.971 32.023 30.703 33.109 32.355 24.081 24.259
-(S/2,0) 29.536 29.575 32.209 32.713 31.589 34.096 35.375 27.986 28.637
u-(S/2,H/2) 29.895 30.011 32.715 34.165 33.354 36.146 41.312 35.197 37.001
i,(0,—H /2) 6.2454 5.5538 5.9073 13.793 11.753 12.358 19.805 10.908 9.8940
i15(0,0) 4.0109 3.3024 3.4518 9.4591 7.4320 7.6609 12.047 3.5032 1.9314
i,(0,H/2) 1.7574 1.0295 0.97269 4.9591 2.9367 2.7721 3.0247 —5.3432 —7.6098
6+(5/2,0) —1.7832x 1073 2.6731x 1073 8.0553x 1073 —0.018151 0.015962 0.058741 —0.27393 —0.17460 0.029254
655(S/2,—H/2) 5.2757 8.5910 10.026 11.347 18.407 21.451 27.506 44.103 51.183
655(5/2,0) —3.3108 —5.6959 —6.7723 —6.9527 —-11.917 —14.158 —15.558 —26.343 —31.192
64s(S/2,H/2) 7.8633 18.656 29.108 16.133 37.929 58.969 34.393 78.901 121.49
6(S/2,—H/2) 1.4698 2.3935 2.7935 3.1615 5.1284 5.9766 7.6635 12.287 14.260
6:(5/2,0) —24.698 —24.463 —24.864 —50.724 —50.277 —51.076 —107.39 —106.55 —108.06
6 (S/2,H/2) —57.847 —55.867 —53.853 —115.81 —111.61 —107.56 —231.22 —222.64 —214.43
6+-(0,0) —0.011956 —0.045917 —0.076992 —0.027748 —0.14933 —0.26630 0.14185 —0.16890 —0.54432
64 (0,H/4) 0.099692 0.18525 0.23179 0.41416 0.76719 0.96071 1.7996 3.2940 4.1233
7(5/2,0) 0.40521 0.40604 0.41762 0.41576 0.41678 0.42844 0.43906 0.44018 0.45161
7(S/2,H/4) 0.67212 0.65835 0.65951 0.68056 0.66714 0.66835 0.69775 0.68491 0.68595
G.(S/2,—H/2) 0.55604 0.63055 0.67274 0.58772 0.66608 0.70989 0.67568 0.76339 0.81087
q.(5/2,0) 0.54665 0.62001 0.66155 0.54802 0.62155 0.66270 0.54625 0.61936 0.65907
G,.(S/2,H/2) 0.53979 0.61220 0.65334 0.52173 0.59162 0.63130 0.48732 0.55239 0.58967
G,(0,H/4) 0.048140 0.055126 0.061769 0.094726 0.10856 0.12164 0.18058 0.20724 0.23215

Fixed shell parameters are R=1m, V- =0.8, Vg =0.2.
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Table 5

Convergence study for a W/Cu orthotropic fiber FGM shell, which is partitioned into 20 layers in order to improve convergence
Number of series terms ,(S/2,0) 65(S/2,—H/2) 6,+(5/2,0) 64-(0,0) 7(S/2,0) q,(S/2,H/4)

2 50.07721 26.65748 —0.6199901 —0.1437777 0.5299225 0.5047100

4 50.07659 26.66727 —0.6286236 —0.1370722 0.5298581 0.5048625

6 50.07689 26.66743 —0.6286748 —0.1369956 0.5298579 0.5048627

8 50.07689 26.66743 —0.6286748 —0.1369956 0.5298579 0.5048627

10 50.07689 26.66743 —0.6286748 —0.1369956 0.5298579 0.5048627

12 50.07689 26.66743 —0.6286748 —0.1369956 0.5298579 0.5048627

Fixed shell parameters are R=1m, ® =3n/4, S/H=3, V=0.75, m=1.

with 10 series terms per layer. All numerical results and plots shown henceforth are obtained using 20 fic-
titious layers and 10 series terms per layer.

Fig. 3 depicts the stresses and displacements at specific points as a function of the shell’s circumferential
width-to-thickness ratio (S/H), due to the sinusoidally distributed pressure load (42);. The angular span
and midsurface radius are chosen to be @ = n/2 and R = 1, respectively. The midsurface radial displace-
ment #,(S/2,0) is accurately predicted by the Fliigge shell theory with FSDT. This is observed over the en-
tire range of shell length to thickness ratios. As the shell becomes increasingly thick, Fliigge CDT tends to
underestimate the displacements for length to thickness ratios less than 10. The radial displacement of the
Donnell shell theory is offset by a constant value and presents significant error throughout the entire range
of width-to-thickness ratios investigated, although the Donnell FSDT performs better than the Donnell
CDT. The midsurface edge displacement in the lateral direction #(0,0) follows identical trends. Fliigge’s
shell theory accurately captures the circumferential normal stress a,,(S/2, —H/2) over the entire range of
length to thickness ratios for both CDT as well as FSDT. In general, Fligge and Donnell FSDT underes-
timate the transverse shear stresses a,,(0,0) over the entire range of shell width-to-thickness ratios as dem-
onstrated in Fig. 3(d). The thermal deformation and stresses are shown in Fig. 4 as a function of the shell’s
circumferential width-to-thickness ratio when it is subjected to the temperature load (42),. Donnell’s shell
theory is found to predict the displacements i, and i@, and circumferential normal stress &y, better than
Fliigge’s shell theory. The transverse shear stress at the shell’s midsurface, 6,.(0,0), which is predicted to
be zero by the FSDT, exhibits serious discrepancy when compared to the analytical solution. However,
it is noted that the magnitude of the transverse shear stress 6, is much smaller than the circumferential nor-
mal stress 6.

The response of isotropic graded shells as a function of the angular extent is presented in Fig. 5,
where the shell’s midsurface radius, R, the volume fraction power-law exponent, n, and width-to-thick-
ness ratio, S/H, have fixed values of 1 m, 2 and 5, respectively. The neglect of shear deformation in the
Fligge CDT theory leads to slightly less accurate predictions of the midsurface displacements as de-
tailed in Fig. 5(a). The Fligge FSDT theory demonstrates excellent correlation for the circumferential
normal stress, G, over the entire range of shell opening angles as shown in Fig. 5(c). The Donnell shell
theory does not give accurate results for the radial displacement or circumferential normal stress for
shells with angular extents greater than 0.5 radians. Results for the temperature loads in Fig. 5(d)-
(f), indicate that Donnell’s shell theory does better than Fliigge’s theory in predicting the thermal dis-
placements and stresses.

The through-the-thickness variation of displacements and stresses are depicted in Fig. 6 for a moderately
thick shell with angular extent of @ = /2, width-to-thickness ratio S/H = 5, midsurface radius R =1 m
and volume fraction profile defined by n = 2. It demonstrates that when the shell is subjected to a radial
pressure load, the assumption of constant radial displacement through the thickness of the shell is valid.
However, when the shell is subjected to a thermal load, the radial displacement is not constant due to
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thermal expansion in the radial direction. The through-the-thickness profiles of the transverse shear stress
04(0, z/ H) predicted by the Fliigge and Donnell FSDT theories are inaccurate.

Tables 3 and 4 present tabular data for the exact solution for the thermomechanical response of an iso-
tropic cylindrical shell where the material properties have been obtained through use of the self-consistent
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Fig. 7. Thermomechanical response for orthotropic FGM W/Cu cylindrical shells of varying length to thickness ratio. Shell
parameters are R=1m, @ = n/2,V{, =0.75,Vy = 0.75,¢~ = 0°,¢" = 180°, m = 1.
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scheme (Hill, 1965). Non-dimensionalized stress components, displacements, temperatures and heat flux are
provided for mechanical and thermal cases for some common geometries.

6.2. Fiber-reinforced orthotropic functionally graded shells

The shell theories are compared to the analytical solution for orthotropic shells consisting of tungsten
fibers in a copper matrix (W/Cu). The orientation of the tungsten fibers is chosen to be a smooth function
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Fig. 8. Through-the-thickness plots for an orthotropic FGM W/Cu cylindrical shells under thermomechanical loading. Shell
parameters are S/H =15, R=1m, @ =n/2,V{, =0.75,Vy =0.75,¢~ =0°,¢" = 180°, m=1.
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of the shell’s radial coordinate. The composite cylindrical assemblage model developed by Hashin (1979) is
used to determine the spatially varying thermomechanical material properties, relative to the fiber’s axial
direction, as a function of the fiber volume fraction. Off-axis material properties in the global coordinate
system are determined through appropriate tensor transformation of the principle material properties rel-
ative to the shell’s circumferential direction, defined by the fiber orientation angle, ¢. The results of a con-
vergence study are shown in Table 5 for the thermomechanical response of a thick orthotropic shell with the
fiber orientation varying linearly (m = 1) from ¢~ = 0° on the inner surface to ¢ = 180° on the outer sur-
face. The fiber volume fraction is held constant at V= 0.75 throughout, and the geometric parameters are
chosen to be S/H =3, R=1m and © = 3n/4. A convergence study is performed by dividing the shell into
20 fictitious layers through the thickness. As evinced by Table 5, the temperature, heat flux, displacements,
stresses have converged to 7 significant digits with 10 series terms per layer.

Fig. 7 presents the results for mechanical and thermal loading of moderately deep W/Cu orthotropic
shells having R = 1 m, © = n/2 and material properties that are symmetric about the midsurface, as a func-
tion of the circumferential length-to-thickness ratios. The fiber orientation is assumed to vary linearly
(m = 1) in the radial direction from ¢~ = 0° and ¢ = 180° and the fiber volume fraction is held constant
at V= 0.75 throughout. As observed previously for isotropic shells, Fliigge shell theory gives good results
for mechanically applied surface loads, with the addition of shear deformation theory leading to the most
accurate predictions of the midsurface radial displacements. However, the Donnell shell theory performs
better for the thermal load. Through-the-thickness plots of the stresses for mechanical and thermal loads

Table 6
Tabular results for the mechanical response of W/Cu orthotropic FGM shells of varying geometry, volume fraction, and fiber
orientation distributions

6=25=20 6=25=10 o= 5=5
n 0 1 0 1 0 1
m 1 1 1 3 3 1
#.(S/2,—H/2) 5.1102 8.2409 8.5535 13.659 29.673 50.624
7,(5/2,0) 5.1155 8.2536 8.5795 13.723 29.818 51.061
#.(S/2,H/2) 5.1094 8.2465 8.5465 13.684 29.557 50.721
(0, —H/2) 1.6397 2.7370 5.2328 8.5879 25.882 45.013
i5(0,0) 1.2652 2.1349 4.2447 7.0294 22.125 38.827
i, (0, H /2) 0.89078 1.5322 3.2559 5.4641 18.355 32.526
(0, —H/2) —5.7619x 107> —0.011201 —0.015729 0.025406 0.056848 —0.12638
,(0,0) —57218x 107 —0.011152 —0.015298 0.025788 0.061118 —0.11853
i,(0,H/2) —5.6931x 107> —0.011087 —0.015010 0.026303 0.064792 —0.10977
7.,(5/2,0) —0.025679 —0.026583 —0.28130 —0.29689 —3.3041 —3.4556
G(S/2,—H/2)  —3.5664 —2.3993 —-10.016 —6.6305 —45.812 —32.033
7.(5/2,0) 0.10860 —0.40409 0.28080 —1.2087 0.94387 —4.3439
s (S/2,H/2) 3.1129 4.2613 7.7718 10.512 25.604 36.899
Gu(S/2,—H/2)  —0.86737 —0.74378 —2.4360 —2.0554 —11.141 —9.9302
7.:(S/2,0) 0.028582 —0.14099 0.015886 —0.39005 —0.72048 —2.3890
G (S/2,H/2) 0.89512 1.2240 2.2545 3.0396 7.5624 10.797
74(0,0) 0.12915 0.12964 0.67922 0.69673 5.1953 5.3154
(0, H /4) 0.092671 0.10832 0.46078 0.54178 3.0120 3.6595
.(0,0) 2.3563x 1072 2.8377x 1073 0.012216 9.9401 x 1073 0.073341 0.10679
o.-(0,H /4) 8.972x 1074 1.4101 x 1073 4.4133x 1072 6.0765x 1072 0.030613 0.044030
G5x(S/2,—H/2) 0.017297 0.013701 0.050240 —0.033061 —0.21888 0.19825
75(S/2,0) 0.023667 4219%x 107 0.065599 —0.089183 —0.12560 0.066576
7(S/2,H/2) 0.016432 0.032004 0.040959 —0.71775 —0.15432 0.26147

Fixed shell parameters are R=1m, V', =0.75, 7y =0,¢~ = 0°,¢" = 90°.
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Table 7
Tabular results for the thermal response of W/Cu orthotropic FGM shells of varying geometry, volume fraction, and fiber orientation
distributions
0=:13=20 0=13=10 0= 7"%:5
n 0 1 0 1 0 1
m 1 1 1 3 3 1
u-(S/2,—H/2) 58.433 57.116 67.783 61.800 84.928 74.169
u-(S/2,0) 58.609 57.382 68.510 62.954 88.095 78.960
u-(S/2,H/2) 59.121 57.989 70.572 65.468 96.662 88.979
(0, —H /2) 14.889 13.432 34.443 29.787 64.964 52.037
it;(0,0) 10.502 9.1164 25.787 21.724 49.795 36.815
u;(0,H/2) 6.0867 4.7672 16.906 13.357 32.629 19.380
i, (0, —H /2) 0.42087 0.61996 0.85335 1.6366 1.8170 2.6206
i,(0,0) 0.42152 0.62079 0.85914 1.6546 1.9279 2.7047
i, (0,H/2) 0.42124 0.62012 0.85724 1.6630 1.9975 2.6762
6,(5/2,0) 4.9287x 1073 3.3892x 1073 0.040736 —0.031550 0.084644 0.035258
64(S/2,—H/2) —2.7678 3.0014 —5.7832 4.1995 —16.011 16.323
G55(S/2,0) 0.91879 —1.9402 1.9017 0.72776 12.303 —9.1328
64(S/2,H/2) —0.58778 7.7467 —1.2682 6.3149 —17.430 32.240
a,(,((S/Z7 —-H/2) —0.67316 0.93044 —1.4065 1.3018 —3.8941 5.0601
61:(S/2,0) —23.511 —21.168 —47.936 —48.855 —110.91 —91.515
6xx(S/2,H/2) —46.747 —44.360 —93.521 —91.349 —191.30 —177.08
64-(0,0) —0.014499 —0.026304 —0.064110 0.061276 0.049721 —0.19386
64-(0,H /4) —0.023157 0.069293 —0.095122 —0.043928 —1.4419 1.2399
6x-(0,0) 0.011145 1.5202x 1073 0.053947 0.31891 1.5882 0.15790
6x(0,H/4) —0.019129 —0.031402 —0.069108 0.078596 0.58639 —0.38028
6 (S/2,—H/2) —1.2634 —0.75827 —2.7255 —2.1297 —6.9963 —4.1110
6(S/2,0) 1.0600 1.1321 2.1648 —0.20032 27723 x 1073 4.7735
6 (S/2,H/2) —1.2158 —1.7899 —2.3392 —4.5381 —4.7578 —6.3745
7(5/2,0) 0.50332 0.42462 0.51329 0.43490 0.53294 0.45763
7(S/2,H/4) 0.75229 0.68972 0.75906 0.69766 0.77094 0.71387
q,(S/2,—-H/2) 0.53650 0.73123 0.56246 0.77121 0.63150 0.88235
4,(8/2,0) 0.52770 0.71898 0.52557 0.71966 0.51606 0.71530
q,(S/2,H/2) 0.52234 0.71031 0.50505 0.68692 0.47727 0.64244
4,(0,0) 0.043125 0.050489 0.087959 0.10649 0.18797 0.21765
4.(0,0) 1.3592x 1073 1.6250 x 1073 2.7723x 1073 1.2739x 1073 220311073 7.0054 x 1073

Fixed shell parameters are R=1m, V3, = 0.75,Vy =0,¢~ = 0°, ¢ = 90°.

are shown in Fig. 8. Tabulated thermoelastic results for the case of W/Cu fiber-reinforced graded shells are
presented in Tables 6 and 7 for different geometries, fiber orientation profiles and volume fraction
distributions.

6.3. Discretely laminated shells vs. continuous grading of fiber volume fraction and orientation

In this section, we characterize the response of orthotropic shells with continuous grading of fiber ori-
entation and compare the results with conventional discretely laminated cylindrical shells. Specifically,
we compare a graded shell with a linear variation of fiber orientation from ¢~ = 0° and ¢ = 90° with
2-layer [0°/90°], 3-layer [0°/45°/90°] and 4-layer [0°/30°/60°/90°] discrete laminates. The through-the-thick-
ness plots of the stresses for the four configurations are shown in Fig. 9 for a mechanical load. The circum-
ferential non-dimensionalized normal stress for the graded fiber-reinforced shell s
0i(S/2,—H/2) = —23.454, which is larger than the values of —23.169 and —22.366 obtained for the 2-layer
and 3-layer shells, respectively. The 4-layer [0°/30°/60°/90°] shell exhibits the smallest circumferential
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Fig. 9. Effect of linear graded fiber orientation on orthotropic W/Cu cylindrical shell stresses under mechanical loading. Shell
parameters are S/H=15, R=1m, @ = /2,1, =0.75,Vy, = 0.75.

normal stress (S/2, —H/2) = —16.149. The shear stress G, has a smooth variation through the thickness
of the graded fiber-reinforced shell as depicted in Fig. 9(b). The transverse shear stress . and transverse
normal stress &, are shown in Fig. 9(c) and (d).

Fig. 10, which contains the through-the-thickness plots of the stresses for a temperature load (42),,
clearly illustrates the benefits of functionally graded fiber-reinforced shells. For the graded shell, the max-
imum circumferential stress 6, = —11.827, which is much smaller than the maximum circumferential
stresses of o, = 25.048, 232.07 and —1252.1, for the 2-layer, 3-layer and 4-layer shells, respectively. Thus,
the functionally graded shell exhibits a 52.7% reduction in the circumferential normal stress magnitude as
compared to the [0°/90°] discrete laminated shell. The maximum values of the transverse shear and trans-
verse normal stresses are [dy,6,] = [0.6436,—0.2871],[—1.3325,0.77951],[-96.111,15.412]  and
[187.65,—68.871] for the FGM, 2-layer, 3-layer and 4-layer shells, respectively. The maximum shear stress
for the graded shell 6,, = —5.8450, is larger than the value of 6,, = 0 for a [0°/90°] shell, but smaller than
the maximum shear stresses of 6, = 10.234 and —22.789 for the [0°/45°/90°] and [0°/30°/60°/90°] shells,
respectively.

The effect of graded fiber volume fraction is considered next. Fig. 11 contains through-the-thickness
plots of thermally induced stresses for shells having all of its fibers oriented at ¢ = 0°, and geometry defined
by S/H =5, R=1m and @ = /2. The functionally graded shell has a linear variation starting at V=0
on the inner surface of the shell to V3> = 0.75 on the outer surface. The results are compared with discretely
laminated 2-layer, 3-layer and 4-layer shells containing [0/0.75], [0/0.375/0.75] and [0/0.25/0.50/0.75]
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Fig. 10. Effect of linear graded fiber orientation on orthotropic W/Cu cylindrical shell stresses under thermal loading. Shell parameters
are S/H=5R=1m, © =n/2,V{,=0.75,Vy = 0.75.

volume fractions, respectively. The peak non-dimensionalized circumferential stress magnitude for the
graded shell is 21.844, which is smaller than the values of 56.002, 37.236 and 28.702 for the 2-layer, 3-layer
and 4-layer shells, respectively. Fig. 11 also demonstrates how the axial stress a,,, transverse shear stress a,
and transverse normal stress ,. components benefit from a gradual change in volume fraction from the
shell’s inner surface to its outer surface.

7. Concluding remarks

An analytical linear thermoelasticity solution has been obtained for functionally graded isotropic and
orthotropic cylindrical shells that are subjected to steady-state thermal and mechanical loads. The material
properties can have an arbitrary variation through the thickness of the shell. A semi-inverse solution is ob-
tained for shells that are simply supported at the edges. The analytically obtained displacements and stres-
ses are compared with those obtained using Fliigge and Donnell shell theories for representative isotropic
functionally graded shells for a wide range of geometric parameters. We also investigate the advantages of
using functionally graded fiber-reinforced composite shells with graded fiber orientations and/or fiber vol-
ume fractions over traditional discretely laminated composite shells. Results indicate that the most signif-
icant improvements are found in thermal applications due to the reduction in spatial mismatch of
thermomechanical material properties. The functionally graded orthotropic shells exhibit smooth
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Fig. 11. Effects of graded fiber volume fractions on orthotropic W/Cu cylindrical shells under thermal loading. Shell parameters are
S/IH=5,R=1m, @ =n/2,¢y, =0,y =0.

variations of both the in-plane and transverse stress components, thereby minimizing the likelihood of pre-
mature failure at an interface between adjoining lamina as in the case of discretely layered fiber-reinforced
materials. The ability of the analytical solution to tackle cylindrical shells with arbitrary variations in mate-
rial properties will enable the designer to tailor the fiber volume fraction and orientation through the thick-
ness of the shell to increase the strength-to-weight ratio or stiffness-to-weight ratio of fiber-reinforced
composite shells.

Acknowledgements

This work was supported by a Maine Space Grant graduate fellowship to J.L. Pelletier and the U.S.
National Science Foundation through grant DMI-0423485.

References

Cheng, Z.Q., Batra, R.C., 2000. Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Composites: Part
B 31, 97-106.

Donnell, L.H., 1935. Stability of thin walled tubes under torsion. NACA Report 479.

Finot, M., Suresh, S., 1996. Small and large deformation of thick and thin-film multi-layers: effect of layer geometry, plasticity and
compositional gradients. Journal of the Mechanics and Physics of Solids 44, 683-721.



1158 J.L. Pelletier, S.S. Vel | International Journal of Solids and Structures 43 (2006) 1131-1158

Fligge, 1973. Stresses in Shells, second ed. Springer-Verlag, New York.

Hashin, Z., 1979. Analysis of properties of fiber composites with anisotropic constituents. Journal of Applied Mechanics 46, 543-550.

Hill, R., 1965. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 13, 213-222.

Hyer, M.W., Rousseau, C.Q., 1987. Thermally induced stresses and deformations in angle-ply composite tubes. Journal of Composite
Materials 21, 454-480.

Loy, C.T., Lam, K.Y., Reddy, J.N., 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical
Sciences 41, 309-324.

Miracle, D.B., 2001. Aeronautical applications of metal-matrix composites. In: Miracle, D.B., Donaldson, S. (Eds.), ASM Handbook:
Volume 21, Composites. ASM International, Material Park, OH, pp. 1043-1049.

Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G., 1999. Functionally Graded Materials: Design, Processing and
Applications. Chapman & Hall.

Nowinski, J.L., 1978. Theory of Thermoelasticity with Applications. Sijthoff & Noordhoff International Publishers B.V., Alphen aan
den Rijn, Netherlands.

Qian, L.F., Batra, R.C., 2004. Transient thermoelastic deformations of a thick functionally graded plate. Journal of Thermal Stresses
27, 705-740.

Qian, L.F., Batra, R.C., Chen, L.M., 2004. Analysis of cylindrical bending thermoelastic deformations of functionally graded plates by
a meshless local Petrov—Galerkin method. Computational Mechanics 33, 263-273.

Reddy, J.N., 2000. Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering 47, 663-684.

Reddy, J.N., 2003. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, second ed. CRC Press, Boca Raton,
FL.

Reddy, J.N., Cheng, Z.Q., 2001. Three-dimensional thermomechanical deformations of functionally graded rectangular plates.
European Journal of Mechanics A/Solids 20, 841-855.

Reissner, E., 1945. The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics 12, 69-77.

Reiter, T., Dvorak, G.J., Tvergaard, V., 1997. Micromechanical models for graded composite materials. Journal of the Mechanics and
Physics of Solids 45, 1281-1302.

Shahsiah, R., Eslami, M.R., 2003. Thermal buckling of functionally graded cylindrical shell. Journal of Thermal Stresses 26, 277-294.

Vel, S.S., Batra, R.C., 2002. Exact thermoelasticity solution for functionally graded thick rectangular plates. AIAA Journal 40,
1421-1433.

Vel, S.S., Batra, R.C., 2003a. Three-dimensional analysis of transient thermal stresses in functionally graded plates. International
Journal of Solids and Structures 40, 7181-7196.

Vel, S.S., Batra, R.C., 2003b. Exact thermoelasticity solution for cylindrical bending deformations of functionally graded plates. In:
Proceedings of IUTAM Symposium on Dynamics of Advanced Materials and Smart Structures, Yonezawa, Japan, 20-24 May
2002. In: Watanabe, K, Ziegler, F. (Eds.), Dynamics of Advanced Materials and Smart Structures. Kluwer Academic Publishers,
Dordrecht.



	An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells
	Introduction
	Problem formulation
	Analytical solution
	Temperature field
	Displacement field

	Classical and shear deformable shell theories
	Fl uuml gge shell theory
	Donnell shell theory
	Cylindrical bending

	Estimation of effective moduli of two-phase composites
	Results and discussion
	Isotropic functionally graded shells
	Fiber-reinforced orthotropic functionally graded shells
	Discretely laminated shells vs. continuous grading of fiber volume fraction and orientation

	Concluding remarks
	Acknowledgements
	References


